Hybrid censoring: Models, inferential results and applications

نویسندگان

  • N. Balakrishnan
  • Debasis Kundu
چکیده

A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. In this review, we first discuss Type-I and Type-II hybrid censoring schemes and associated inferential issues. Next, we present details on developments regarding generalized hybrid censoring and unified hybrid censoring schemes that have been introduced in the literature. Hybrid censoring schemes have been adopted in competing risks set-up and in step-stress modeling and these results are outlined next. Recently, two new censoring schemes, viz., progressive hybrid censoring and adaptive progressive censoring schemes have been introduced in the literature. We discuss these censoring schemes and describe inferential methods based on them, and point out their advantages and disadvantages. Determining an optimal hybrid censoring scheme is an important design problem, and we shed some light on this issue as well. Finally, we present some examples to illustrate some of the results described here. Throughout the article, we mention some open problems and suggest some possible future work for the benefit of readers interested in this area of research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking Interval for Type II Hybrid Censoring Scheme

The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...

متن کامل

Modeling and Inferential Thoughts for Consecutive Gap Times Observed with Death and Censoring

In the perspective of biomedical applications, consider a re- current event situation with a relatively low degree of recurrence. In this setting, the focus is placed on successive inter-event gap times which are observed in the presence of both a terminal event like death and inde- pendent censoring. The terminal event is potentially related to recurrent events while the censoring process is a...

متن کامل

Entropy of Hybrid Censoring Schemes

A hybrid censoring scheme is a mixture of type I and type II censoring schemes. When $n$ items are placed on a life test, the experiment terminates under type I or type II hybrid censoring scheme if either a pre-fixed censoring time T or the rth (1<=r<=n&nbsp;is fixed) failure is first or later observed, respectively. In this paper, we investigate the decomposition of entropy in both hybrid cen...

متن کامل

Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples

The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly&nbsp;used for model selection but the precise value of AIC has no direct interpretation.&nbsp;In this paper we use a normalization of a difference of Akaike criteria in comparing&nbsp;between the two rival models under unified hybrid cens...

متن کامل

Heteroskedastic Transformation Models with Covariate Dependent Censoring

In this paper we propose an inferential procedure for transformation models with conditional heteroskedasticity in the error terms. The proposed method is robust to covariate dependent censoring of arbitrary form. We provide sufficient conditions for point identification. We then propose a consistent estimator and show that it is asymptoticaly √ n normal. We conduct a simulation study that reve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013